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Abstract:For optimal control problems involving equality and inequality constraints in the control functions, some
fundamental questions related to second order necessary conditions are posed. In particular, for a wide range of
problems, we provide a direct derivation of such conditions in terms of a certain quadratic function, under some
normality assumptions, and on a specific convex set of differentially admissible variations defining the critical
directions. The question of whether this result can be improved by weakening the assumptions and modifying the
set of critical directions by enlarging it is also studied. Under certain assumptions, an affirmative answer to that
question is provided.
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1 Introduction
This paper deals with some fundamental questions re-
lated to the derivation of second order necessary con-
ditions for certain classes of optimal control problems
involving equality and inequality constraints in the
control functions.

In particular, we shall be concerned with differ-
ent convex sets of differentially admissible variations
defining the critical directions of the extremal under
consideration, as well as the assumptions imposed
on the optimal control which may imply, as a neces-
sary condition for optimality, the nonnegativity of a
quadratic form in those sets.

The problem that concerns us can be stated as fol-
lows. Suppose we are given an intervalT := [t0, t1]
in R, two pointsξ0, ξ1 in Rn, and functionsL andf
mappingT ×Rn×Rm to R andRn respectively, and
ϕ = (ϕ1, . . . , ϕq) mappingRm to Rq (q ≤ m).

Consider the problem, which we label (P), of min-
imizing the functional

I(x, u) :=
∫ t1

t0
L(t, x(t), u(t))dt

over all couples(x, u) with x:T → Rn piecewiseC1

andu:T → Rm piecewise continuous, satisfying

ẋ(t) = f(t, x(t), u(t)) (t ∈ T );

x(t0) = ξ0, x(t1) = ξ1;

ϕα(u(t)) ≤ 0 andϕβ(u(t)) = 0

(α ∈ R, β ∈ Q, t ∈ T ),

whereR = {1, . . . , r}, Q = {r + 1, . . . , q}.
We have chosen this fixed-endpoint control prob-

lem of Lagrange for simplicity of exposition, and to
keep notational complexity to a minimum, but no dif-
ficulties arise in extending the theory to follow to
Bolza problems with possible variable endpoints (see,
for example, [12, 13] for details).

We shall find convenient to use the following no-
tation. Denote byX the space of piecewiseC1 func-
tions mappingT to Rn, byUk the space of piecewise
continuous functions mappingT to Rk (k ∈ N), and
setZ := X × Um.

Elements ofZ will be calledprocessesand a pro-
cess(x, u) is admissibleif it satisfies the constraints.
An admissible process(x, u) is asolutionto the prob-
lem (P) if I(x, u) ≤ I(y, v) for any admissible pro-
cess(y, v).

We assume thatL, f andϕ are of classC2 and
theq × (m+ r)-dimensional matrix(

∂ϕi

∂uk
δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m) has rank
q in U (hereδαα = 1, δαβ = 0 (α 6= β)), where

U := {u ∈ Rm | ϕα(u) ≤ 0 (α ∈ R),

ϕβ(u) = 0 (β ∈ Q)}.
This condition is equivalent to the condition that,

at each pointu in U , the matrix(
∂ϕi

∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m)
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has rankp, wherei1, . . . , ip are the indicesi ∈ R∪Q
such thatϕi(u) = 0 (see [9]).

The importance of deriving second order neces-
sary conditions in optimal control, as well as ques-
tions related to existence of optimal solutions, not
only from a theoretical point of view but also due to a
wide range of applications, is fully explained in [1–9,
11, 15–19, 22–24] and references therein.

In particular, [1] considers an electromechanical
system including a controlled voltage converter, an
electrical drive and a mechanism as a two-mass design
scheme. The system studied in [1] provides a reliable
description of the position control processes for both
azimuthal and elevation axes of a ground telescope ro-
tary support.

To give another illustrative example, we refer to
[16] which includes a full discussion on how, by solv-
ing numerically a certain Riccati equation related to
a problem with constraints of the type we consider in
this paper, one can find a solution to the classical prob-
lem of a planar Earth-Mars orbit transfer with minimal
transfer time.

Two fundamental aspects of the theory of sec-
ond order necessary conditions for this kind of prob-
lems are, firstly, to specify the set of critical direc-
tions where the second variations can be assured to
be nonnegative and, secondly, to find the assumptions
required so that the above condition holds.

These aspects are equally relevant for optimiza-
tion problems in finite dimensional spaces (see [10]).
Some examples illustrating the difficulties encoun-
tered when dealing with those two questions can be
found in [20, 21]. New results related to these ques-
tions, and applicable to a wide range of optimal con-
trol problems, are presented in this paper.

This paper is organized as follows. In Section 2
we introduce some notation and exhibit three cones
of admissible variations together with the definitions
of regularity we shall deal with. Section 3 poses a
basic question on second order necessary conditions
which relates some regularity assumptions with a cer-
tain set of admissible directions. An answer to that
question for a particular case is the content of Section
4. In Section 5 we provide a direct derivation of sec-
ond order necessary conditions under strong normal-
ity assumptions which enlarges the classical set of ad-
missible variations where the corresponding quadratic
form is nonnegative. Finally, in Section 6, we provide
two numerical examples illustrating some of the ideas
treated in the paper.

2 Notation and regularity

For allµ ∈ Rq define the following subsets of indices
of R:

Γ0(µ) := {α ∈ R | µα = 0},

Γp(µ) := {α ∈ R | µα > 0}

and, for allu ∈ Rm, consider the set ofactive indices
in u given by

Ia(u) := {α ∈ R | ϕα(u) = 0}.

For anyu ∈ Rm andµ ∈ Rq define the setsτ0(u),
τ1(u, µ) andτ2(u) as follows:

τ0(u) := {h ∈ Rm | ϕ′i(u)h = 0 (i ∈ Ia(u) ∪Q)}.

τ1(u, µ) := {h ∈ Rm | ϕ′i(u)h ≤ 0

(i ∈ Ia(u) ∩ Γ0(µ)),

ϕ′j(u)h = 0 (j ∈ Γp(µ) ∪Q)}

τ2(u) := {h ∈ Rm | ϕ′i(u)h ≤ 0 (i ∈ Ia(u)),

ϕ′j(u)h = 0 (j ∈ Q)}.

Based on these sets, we define regularity as fol-
lows. Let (x, u) be an admissible process and let
µ ∈ Uq with

µα(t) ≥ 0, µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ).

For t ∈ T define

A(t) := fx(t, x(t), u(t)),

B(t) := fu(t, x(t), u(t)),

and denote by ‘∗’ the transpose. We shall say that

a. (x, u) is τ0-regular (or strongly normal) if
z ≡ 0 is the only solution to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h = 0 for all h ∈ τ0(u(t)) (t ∈ T ).

b. (x, u, µ) is τ1-regular if z ≡ 0 is the only so-
lution to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(u(t), µ(t)) (t ∈ T ).

c. (x, u) is τ2-regular(or weakly normal) if z ≡ 0
is the only solution to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ2(u(t)) (t ∈ T ).
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For all (t, x, u, p, µ) in T ×Rn ×Rm ×Rn ×Rq

let
H(t, x, u, p, µ) := 〈p, f(t, x, u)〉

− L(t, x, u)− 〈µ, ϕ(u)〉,

and, for all(x, u, p, µ) ∈ Z×X ×Uq and(y, v) ∈ Z,
define

J((x, u, p, µ); (y, v)) :=
∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all(t, y, v) ∈ T × Rn × Rm,

2Ω(t, y, v) := − [〈y,Hxx(t)y〉+ 2〈y,Hxu(t)v〉

+ 〈v,Huu(t)v〉]

andH(t) denotesH(t, x(t), u(t), p(t), µ(t)).

3 The main question

The next result (second order necessary conditions)
is well-known in the literature. In particular, in [7],
it was derived by reducing the original problem into
a problem involving only equality constraints in the
control.

Given an admissible process(x0, u0) we shall de-
note by[t] the point(t, x0(t), u0(t)).

Theorem 3.1Suppose (x0, u0) is a solution to (P)and
there exists (p, µ) ∈ X × Uq such that

a. µα(t) ≥ 0 and µα(t)ϕα(u0(t)) = 0 for all
α ∈ R and t ∈ T ;

b. ṗ(t) = −f∗x [t]p(t) + L∗x[t]

( = −H∗
x(t, x0(t), u0(t), p(t), µ(t)));

c. 0 = f∗u [t]p(t)− L∗u[t]− ϕ′∗(u0(t))µ(t)

( = Hu(t, x0(t), u0(t), p(t), µ(t))).

If (x0, u0) is strongly normal then (p, µ) is unique and

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying
i. ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;

iii. v(t) ∈ τ0(u0(t)) (t ∈ T ).

It is important to mention that the same set of
“admissible variations” defined by relations (i)–(iii)
yields second order necessary conditions in other ref-
erences (see, for example, [2–4, 11, 18]). Those con-
ditions are obtained in different ways and, in some

cases, under different assumptions, but they are all ex-
pressed in terms of the set of variations that include
τ0(u0(t)) explicitly.

On the other hand, the same device used in [7],
which consists in defining the functions

ψα(u,w) := ϕα(u) + (wα)2 (α ∈ R),

ψβ(u,w) = ϕβ(u) (β ∈ Q),

appears in [23] together with an application of the re-
sults obtained in [22].

The following example shows that the conclusion
of Theorem 3.1 may not hold if the solution to the
problem is weakly (and not strongly) normal.

Example 3.2Let a, b > 0 and consider the problem
of minimizing

I(x, u) =
∫ 1

0
{u2(t) + au3(t)}dt

subject to(x, u) ∈ Z and
ẋ(t) = u2

1(t) + u2(t)− bu3(t) (t ∈ [0, 1]);

x(0) = x(1) = 0;

u2(t) ≥ 0, u3(t) ≥ 0 (t ∈ [0, 1]).

In this caseT = [0, 1], n = 1,m = 3, r = q = 2,
ξ0 = ξ1 = 0 and, for allt ∈ T , x ∈ R, andu =
(u1, u2, u3),

L(t, x, u) = u2 + au3, f(t, x, u) = u2
1 + u2 − bu3,

ϕ1(u) = −u2, ϕ2(u) = −u3.

We have
H(t, x, u, p, µ) =

p(u2
1 + u2 − bu3)− u2 − au3 + µ1u2 + µ2u3

and so

Hu(t, x, u, p, µ) = (2pu1, p− 1+µ1,−pb−a+µ2),

Huu(t, x, u, p, µ) =

 2p 0 0
0 0 0
0 0 0

 .

It follows that, for all(x, u, p, µ) ∈ Z ×X × U3 and
(y, v) ∈ Z, the second variation is given by

J((x, u, p, µ); (y, v)) = −
∫ 1

0
2p(t)v2

1(t)dt.

It is clear from the way the problem is posed that

(x0, u0) ≡ (0, 0)
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solves it. Now, define

µ = (µ1, µ2) ≡ (0, a+ b), p ≡ 1,

and note that(x0, u0, p, µ) satisfies conditions (a)–(c)
of Theorem 3.1.

In order to check the regularity assumptions, note
first that

ϕ′1(u) = (0,−1, 0),

ϕ′2(u) = (0, 0,−1).

Therefore

τ0(u0(t)) = {h | −h2 = 0, −h3 = 0},
τ1(u0(t), µ(t)) = {h | −h2 ≤ 0, −h3 = 0},
τ2(u0(t)) = {h | −h2 ≤ 0, −h3 ≤ 0}.

Since
fx(t, x0(t), u0(t)) = 0,

fu(t, x0(t), u0(t)) = (0, 1,−b),

the system

ż(t) = −A∗(t)z(t) = 0,

z∗(t)B(t)h = z(t)(h2 − bh3) = 0

for all (h1, h2, h3) ∈ τ0(u0(t)) (t ∈ T ) has nontrivial
solutions and so(x0, u0) is notτ0-regular.

On the other hand,z ≡ 0 is the only solution to
the system

ż(t) = 0, z(t)(h2 − bh3) ≤ 0

for all (h1, h2, h3) ∈ τ2(u0(t)) (t ∈ T ) since both
(0, 1, 0) and (0, 0, 1) belong toτ2(u0(t)) implying
thatz(t) ≤ 0 and−z(t) ≤ 0 (t ∈ T ), so that(x0, u0)
is τ2-regular.

Finally, the system

ż(t) = 0, z(t)(h2 − bh3) ≤ 0

for all (h1, h2, h3) ∈ τ1(u0(t), µ(t)) (t ∈ T ) has
nontrivial solutions implying that(x0, u0, µ) is notτ1-
regular.

Let v = (v1, v2, v3) ≡ (1, 0, 0) andy ≡ 0. Then
(y, v) solves the system

ẏ(t) = fx[t]y(t) + fu[t]v(t)
= v2(t)− bv3(t) (t ∈ T ),

y(0) = y(1) = 0, v(t) ∈ τ0(u0(t)), and

J((x0, u0, p, µ); (y, v)) = −
∫ 1

0
2p(t)v2

1(t)dt

= −2 < 0.

It is of interest to know if the second order nec-
essary condition of Theorem 3.1 holds in a larger set
and/or under weaker assumptions. In particular, we
would like to know if the theorem remains valid if we
replace condition (iii) by

v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T )

and also weaken the strong normality assumption on
(x0, u0) assuming onlyτ1-regularity of(x0, u0, µ).

Explicitly, the question is if the following result
holds.

Theorem 3.3Suppose (x0, u0) is a solution to (P)and
there exists (p, µ) ∈ X × Uq such that

a. µα(t) ≥ 0 with µα(t) = 0 if ϕα(u0(t)) < 0
for all α ∈ R, t ∈ T ;

b. ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)) and

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0.
If (x0, u0, µ) is τ1-regular, then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying
i. ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;
iii. v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).

This question was posed in [12, 13], where it is
proved that Theorem 3.3 is valid assuming that the
control setU is convex and the functionIa(u0(·)) is
piecewise constant. In the next two sections we give
partial answers to this question.

For comparison reasons let us briefly state the
main result, related to this question, given in [13]. The
problem considered there is that of minimizing

J(u) = `(x(t1)) +
∫ t1

t0
L(t, x(t), u(t))dt

subject to

a. x:T → Rn is piecewiseC1 andu:T → Rm is
piecewise continuous;

b. ẋ(t) = f(t, x(t), u(t));
c. x(t0) = ξ0, x(t1) ∈ C;
d. (t, x(t), u(t)) ∈ A,

wheret0 = 0, T = [t0, t1], ξ0 ∈ Rn, C = {x ∈ Rn |
ϕ(x) = 0}, A = Ω × U whereΩ is a relatively open
subset ofT × Rn and

U = {u ∈ Rm | gi(u) ≤ 0 (i ∈ I1),

gi(u) = 0 (i ∈ I2)},
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I1, I2 are two disjoint finite index sets,f :A → Rn,
L:A → R, `: Rn → R, ϕ: Rn → Rk, gi: Rm → R
(i ∈ I1 ∪ I2).

For this problem, second order necessary condi-
tions are obtained in [13] as well as a generalized no-
tion of conjugate points.

The main result of the paper (Theorem 4.6) states
that, assuming

• the control setU is convex,
• the couple(x0, u0) is a regular extremal which

actually solves the problem,
• the functionIa(u0(·)) is piecewise constant,

then the underlying open time interval contains no
generalized conjugate points tot1. This result is an
immediate consequence of a previous result (Theo-
rem 4.3), stated in terms of the second variation which
shows that, in the regular case, the existence of a gen-
eralized conjugate point implies the existence of an
admissible variation for which the second variation is
negative. The term “regular” in [13], when the prob-
lem posed above is inserted in the context of this pa-
per, corresponds precisely toτ1-regularity as defined
in Section 2.

It is important to mention that, in the theory to
follow in the next two sections, no convexity assump-
tions are imposed.

4 A particular case

Let us begin by stating a definition and some auxiliary
results taken up from [9].

Definition 4.1 A setA ⊂ R × Rq will be calledad-
missibleif, given (s, v) ∈ A, there existε > 0 and
u: [s − ε, s + ε] → Rq continuous whose elements
(t, u(t)) are inA andu(s) = v. Its elements are called
admissible elements.

Suppose we are given an intervalT = [t0, t1], an
admissible setA, andF :A → R continuous. Let

C := {u:T → Rq | u is piecewise continuous and

(t, u(t)) ∈ A (t ∈ T )}

and consider the problem of minimizingJ onC where

J(u) :=
∫ t1

t0
F (t, u(t))dt.

Lemma 4.2Let u0 ∈ C. Then u0 minimizes J on C
if and only if F (t, u) ≥ F (t, u0(t)) (t ∈ T ) when-
ever (t, u) ∈ A. Moreover, these relations imply that
F (·, u0(·)) is continuous on T.

Lemma 4.3 Let D be a region of points in R × Rq,
ϕ = (ϕ1, . . . , ϕm):D → Rm of class C1, and let

A = {(t, u) ∈ D | ϕα(t, u) ≤ 0 (α ∈ A),

ϕβ(t, u) = 0 (β ∈ B)}
whereA = {1, . . . , p},B = {p+1, . . . ,m}. Assume
that the m× (m+ q)-dimensional matrix(

∂ϕα

∂uk
δαβϕβ

)
=


∂ϕ1

∂u1
· · · ∂ϕ1

∂uq
ϕ1 · · · 0

...
...

...
...

∂ϕm

∂u1
· · · ∂ϕm

∂uq
0 · · · ϕm


has rank m on A. Then A is admissible.

Lemma 4.4LetD be a region of points in R×Rq, ϕ =
(ϕ1, . . . , ϕm):D → Rm and f :D → R continuous
functions having continuous derivatives with respect
to u on D, and let

A = {(t, u) ∈ D | ϕα(t, u) ≤ 0 (α ∈ A),

ϕβ(t, u) = 0 (β ∈ B)}
whereA = {1, . . . , p},B = {p+1, . . . ,m}. Assume
that the m× (q + p)-dimensional matrix(

∂ϕα

∂uk
δαβϕβ

)
(α = 1, . . . ,m; β = 1, . . . , p; k = 1, . . . , q) has rank
m on D. Consider the set

C := {u:T → Rq | u is piecewise continuous and

(t, u(t)) ∈ A (t ∈ T )}.
Let u0 ∈ C and suppose that f(t, u) ≥ f(t, u0(t))
(t ∈ T ) whenever (t, u) ∈ A. Then there exists a
unique µ:T → Rm such that, if

F (t, u, µ) = f(t, u) + 〈µ, ϕ(t, u)〉,

then
Fu(t, u0(t), µ(t)) = 0 (t ∈ T ).

Moreover, µα(t) ≥ 0 (α ∈ A, t ∈ T ) and µα(t) = 0
whenever ϕα(t, u0(t)) < 0. The function µ is piece-
wise continuous on T and continuous at each point of
continuity of u0.

Let us now return to our original optimal control
problem (P). Throughout this section we shall con-
sider the case whenL(t, x, u) = L(t, u), i.e.,L does
not depend onx.
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For our problem, define

C = {u ∈ Um | (t, u(t)) ∈ A (t ∈ T )},

where

A = {(t, u) ∈ T × Rm | ϕα(u) ≤ 0 (α ∈ R),

ϕβ(u) = 0 (β ∈ Q)}.

Lemma 4.5 Suppose u0 minimizes I over C. Then
there exists a unique ν ∈ Uq such that, if

F (t, u, ν) = L(t, u) + 〈ν, ϕ(u)〉

then
Fu(t, u0(t), ν(t)) = 0.

Moreover, να(t) ≥ 0 with

να(t)ϕα(u0(t)) = 0 (α ∈ R, t ∈ T ),

and
〈h, Fuu(t, u0(t), ν(t))h〉 ≥ 0

for all h ∈ τ1(u0(t), ν(t)).

Proof: Sinceu0 minimizes

I(u) =
∫ t1

t0
L(t, u(t))dt

overC and, by Lemma 4.3,A is admissible, it follows
by Lemma 4.2 that

L(t, u) ≥ L(t, u0(t)) (t ∈ T )

whenever(t, u) ∈ A. Therefore, by Lemma 4.4, there
exists a uniqueν ∈ Uq satisfying the first assertions of
the lemma. The last assertion follows since(t, u0(t))
is normal with respect toA and so normal with re-
spect to the set of modified tangential constraints (a
full account of these ideas can be seen in [9]).

We are now in a position to prove one of the main
results of the paper. It states that Theorem 3.3 does
indeed hold in the event thatL does not depend onx
and the optimal control also minimizesI overC.

Note that this last assumption is needed in the
proof since the optimality of the process(x0, u0) does
not imply that of the controlu0 overC.

Example 4.6A simple example of this fact is given
by the problem of minimizing

I(u) =
∫ 1

0
u(t)dt

subject to

ẋ(t) = u2(t), x(0) = x(1) = 0, u(t) ≤ 0.

Then(x0, u0) = (0, 0) solves (P), being the only ad-
missible process, butu0 = 0 does not minimizeI over
the set

C = {u ∈ U1 | u(t) ≤ 0}.

Proposition 4.7Suppose (x0, u0) solves (P)and there
exists (p, µ) ∈ X × Uq satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(u0(t)) = 0 for all
α ∈ R, t ∈ T ;

b. ṗ(t) = −A∗(t)p(t) (t ∈ T );
c. p∗(t)B(t) = Lu(t, u0(t)) + µ∗(t)ϕ′(u0(t))

(t ∈ T ).
Suppose also that u0 minimizes I over C. If p ≡ 0
then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z with v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).
In particular, if (x0, u0, µ) is τ1-regular, then p ≡ 0.

Proof: Let

F (t, u, ν) = L(t, u) + 〈ν, ϕ(u)〉.

By Lemma 4.5, there exists a uniqueν ∈ Uq such that

Fu(t, u0(t), ν(t)) = Lu(t, u0(t)) + ν∗(t)ϕ′(u0(t))

= 0 (t ∈ T ). (1)

If p ≡ 0 then, by (c), also

Fu(t, u0(t), µ(t)) = 0.

By uniqueness,µ ≡ ν. By Lemma 4.5 we also have

〈h, Fuu(t, u0(t), µ(t))h〉 ≥ 0

for all h ∈ τ1(u0(t), µ(t)). Note that

H(t, x, u, p, µ) = −F (t, u, µ)

and so

2Ω(t, y, v) = 〈v, Fuu(t, u0(t), µ(t))v〉.

Hence
J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z with v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).
Suppose now that(x0, u0, µ) is τ1-regular. By (c)

and (1), we have

p∗(t)B(t) =
q∑
1

(µα(t)− να(t))ϕ′α(u0(t))
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and so, for allh ∈ τ1(u0(t), µ(t)),

p∗(t)B(t)h =
∑

α∈N(t)

−να(t)ϕ′α(u0(t))h

where

N(t) = {α ∈ Ia(u0(t)) | µα(t) = 0}.

Thus p∗(t)B(t)h ≥ 0 for all h ∈ τ1(u0(t), µ(t)).
This implies that−p is a solution to the system

ż(t) = −A∗(t)z(t), z∗(t)B(t)h ≤ 0

for all h ∈ τ1(u(t), µ(t)) (t ∈ T ). Since(x0, u0, µ)
is τ1-regular,p ≡ 0.

5 A direct approach

In the previous section we proved that Theorem 3.3
does indeed hold if some assumptions are imposed on
the integrandL and the optimal control.

In this section we shall derive a simpler version of
Theorem 3.3 by proving that, for certain cases, it does
hold under a strong normality assumption instead of
that ofτ1-regularity. In other words, the classical set
of admissible variations is enlarged, thus obtaining an
improved set of necessary conditions, but the assump-
tions on the control remain those ofτ0-regularity.

To do so, let us first introduce a set whose ele-
ments are embedded into a one-parameter family of
admissible processes and for which the derivation of
second order conditions is straightforward.

Definition 5.1 For all (x0, u0) admissible andµ ∈ Uq

denote byW(x0, u0, µ) the set of all(y, v) ∈ Z for
which there existδ > 0 and a one-parameter family

(x(·, ε), u(·, ε)) (|ε| < δ)

of processes such that

i. (x(t, 0), u(t, 0)) = (x0(t), u0(t)) (t ∈ T );
ii. (xε(t, 0), uε(t, 0)) = (y(t), v(t)) (t ∈ T );
iii. (x(·, ε), u(·, ε)) is admissible(0 ≤ ε < δ);
iv. µα(t)ϕα(u(t, ε)) = 0 for all α ∈ R, t ∈ T ,

0 ≤ ε < δ.

Lemma 5.2Suppose (x0, u0) solves (P)and there ex-
ists (p, µ) ∈ X × Uq such that

a. µα(t) ≥ 0 with µα(t) = 0 if ϕα(u0(t)) < 0
for all α ∈ R, t ∈ T ;

b. ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)) and

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0.

Then
J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ W(x0, u0, µ).

Proof: Define, for all(x, u) ∈ Z,

K(x, u) := 〈p(t1), ξ1〉 − 〈p(t0), ξ0〉

+
∫ t1

t0
F (t, x(t), u(t))dt

where, for all(t, x, u) ∈ T × Rn × Rm,

F (t, x, u) := L(t, x, u)− 〈p(t), f(t, x, u)〉

+ 〈µ(t), ϕ(u)〉 − 〈ṗ(t), x〉.

Observe that

F (t, x, u) = −H(t, x, u, p(t), µ(t))− 〈ṗ(t), x〉

and, if(x, u) is admissible, then

K(x, u) = I(x, u) +
∫ t1

t0
〈µ(t), ϕ(u(t))〉dt.

Let (y, v) ∈ W(x0, u0, µ) and letδ > 0 and

(x(·, ε), u(·, ε)) (|ε| < δ)

be as in Definition 5.1. Then

g(ε) := K(x(·, ε), u(·, ε)) (|ε| < δ)

satisfies

g(ε) = I(x(·, ε), u(·, ε)) ≥ I(x0, u0)
= K(x0, u0) = g(0) (0 ≤ ε < δ).

Note that

Fx[t] = −Hx(t, x0(t), u0(t), p(t), µ(t))− ṗ∗(t) = 0,

Fu[t] = −Hu(t, x0(t), u0(t), p(t), µ(t)) = 0

and thereforeg′(0) = 0. Consequently

0 ≤ g′′(0) = K ′′((x0, u0); (y, v))
= J((x0, u0, p, µ); (y, v)).

Definition 5.3 For all (x0, u0) admissible andµ ∈ Uq

denote byY (x0, u0, µ) the set of all(y, v) ∈ Z satis-
fying

i. ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;

iii. v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).
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Note 5.4 For all (x0, u0) ∈ Ze(U) and µ ∈ Uq,
W(x0, u0, µ) ⊂ Y (x0, u0, µ).

Proof: Let (y, v) ∈ W(x0, u0, µ) and letδ > 0 and
(x(·, ε), u(·, ε)) (|ε| < δ) be as in Definition 5.1. By
5.1(iii) we have, for all0 ≤ ε < δ,

ẋ(t, ε) = f(t, x(t, ε), u(t, ε)) (t ∈ T ),

x(t0, ε) = ξ0, x(t1, ε) = ξ1

Also by 5.1(iii) we have, for all(t, ε) ∈ T × [0, δ),

ϕα(u(t, ε)) ≤ 0 (α ∈ R),

ϕβ(u(t, ε)) = 0 (β ∈ Q).

Fix i ∈ R ∪Q andt ∈ T , and setγ(ε) := ϕi(u(t, ε))
so that

γ′(0) = ϕ′i(u0(t))v(t).

If i ∈ Ia(u0(t)) thenγ′(0) ≤ 0 and, ifµi(t) > 0 or
i ∈ Q, thenγ ≡ 0. Thus 5.3(i) and (ii) hold implying
that(y, v) ∈ Y (x0, u0, µ).

Let us now show that, under certain conditions,
Y (x0, u0, µ) andW(x0, u0, µ) coincide. We shall
invoke the following assumptions related to an ad-
missible process(x0, u0) and a process(y, v) ∈
Y (x0, u0, µ).

(A1) There exist(yi, vi) (i = 1, . . . , n) satisfying

ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T )

and such thatyi(t0) = 0 for all i = 1, . . . , n,
|y1(t1) · · · yn(t1)| 6= 0, andϕ′α(u0(t))vi(t) = 0 for
all α ∈ Ia(u0(t)) ∪Q, i = 1, . . . , n, t ∈ T .

(A2) Ia(u0(·)) is piecewise constant.

(A3) Let T1, . . . , Ts denote the subintervals ofT
whereIa(u0(·)) is constant andu0, v, v1, . . . , vn are
continuous. If there existi ∈ R andt ∈ Tj such that
ϕi(u0(t)) < 0, thenTj is closed.

Lemma 5.5 Suppose (x0, u0) is an admissible pro-
cess and µ ∈ Uq with µα(t) ≥ 0 (α ∈ R, t ∈ T ).
If (y, v) ∈ Y (x0, u0, µ) and (A1)–(A3) hold then
(y, v) ∈ W(x0, u0, µ).

Proof: For all j = 1, . . . , s and t ∈ Tj , let pj be
the cardinality ofIa(u0(t)) ∪Q and denote byϕj the
function mappingRm to Rpj given by

ϕj(u) = (ϕi1(u), . . . , ϕipj
(u))

whereIa(u0(t)) ∪ Q = {i1, . . . , ipj}. For all j =
1, . . . , s define

ū(t, ε, α, λ) :=

u0(t) + εv(t) +
n∑

i=1

αivi(t) + ϕj′∗(u0(t))λ

for all (t, ε, α, λ) ∈ Tj × R× Rn × Rpj and let

hj(t, ε, α, λ) := ϕj(ū(t, ε, α, λ))− εϕj′(u0(t))v(t).

Note thathj(t, 0, 0, 0) = 0 and

|hj
λ(t, 0, 0, 0)| = |Λj(t)| 6= 0 (t ∈ Tj)

whereΛj(t) = ϕj′(u0(t))ϕj′∗(u0(t)). By the implicit
function theorem, there existνj > 0 and functions

σj :Tj × (−νj , νj)× (−νj , νj)n → Rpj

such that, for allt ∈ Tj , σj(t, 0, 0) = 0, σj(t, ·, ·) is
C2 and

hj(t, ε, α, σj(t, ε, α)) =

ϕj(ū(t, ε, α, σj(t, ε, α)))− εϕj′(u0(t))v(t) = 0.

Let ν := min{νj}j and letσ(t, ε, α) := σj(t, ε, α)
(t ∈ Tj , j = 1, . . . , s, |ε| < ν, |αi| < ν). Thus

ϕj(ū(t, ε, α, σ(t, ε, α))) =

εϕj′(u0(t))v(t) (t ∈ Tj , |ε| < ν, |αi| < ν).

Taking the derivative with respect toε and αi at
(ε, α) = (0, 0) we get

0 = ϕj′(u0(t))[v(t) + ϕj′∗(u0(t))σε(t, 0, 0)]

− ϕj′(u0(t))v(t) = Λj(t)σε(t, 0, 0),

0 = ϕj′(u0(t))[vi(t) + ϕj′∗(u0(t))σαi(t, 0, 0)]

= Λj(t)σαi(t, 0, 0)

and, therefore,σε(t, 0, 0) = σαi(t, 0, 0) = 0 (t ∈ T ).
Define now

w(t, ε, α) := ū(t, ε, α, σ(t, ε, α))

and observe that, in view of the above relations, we
have

wε(t, 0, 0) = v(t), wαi(t, 0, 0) = vi(t) (t ∈ T ).

By the embedding theorem of differential equations,
the equations

ż(t) = f(t, z(t), w(t, ε, α)) (t ∈ T ), z(t0) = ξ0

have unique solutions

z(t, ε, α) (t ∈ T, |ε| < η, |αi| < η)
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with 0 < η < ν, such thatz(t, 0, 0) = x0(t).
The function z(t, ε, α) is continuous and has con-
tinuous first and second derivatives with respect to
the variablesε, α1, . . . , αn. The functionsż(t, ε, α)
and their first and second derivatives with respect to
ε, α1, . . . , αn are piecewise continuous with respect
to t. By differentiation with respect toε andαi at
(ε, α) = (0, 0) it is found that

żε(t, 0, 0) = A(t)zε(t, 0, 0) +B(t)v(t),

zε(t0, 0, 0) = 0,

żαi(t, 0, 0) = A(t)zαi(t, 0, 0) +B(t)vi(t),

zαi(t0, 0, 0) = 0

and therefore

zε(t, 0, 0) = y(t), zαi(t, 0, 0) = yi(t) (t ∈ T ).

Let S := (−η, η) and defineg:S × Sn → Rn by

g(ε, α) := z(t1, ε, α)− ξ1.

Note thatg(0, 0) = 0 and|gα(0, 0)| = |M | 6= 0 where

M = (y1(t1) · · · yn(t1)).

By the implicit function theorem there exist0 < δ <
η andβ: (−δ, δ) → Rn of classC2 such thatβ(0) = 0
andg(ε, β(ε)) = 0 (|ε| < δ). We have, taking the
derivative with respect toε at ε = 0, that

0 = gε(0, 0) + gα(0, 0)β′(0)

= y(t1) +Mβ′(0) = Mβ′(0)

implying that β′(0) = 0. By continuity we may
chooseδ > 0 so that|βi(ε)| < η for all |ε| < δ,
i = 1, . . . , n. The one-parameter family

x(t, ε) := z(t, ε, β(ε)),

u(t, ε) := w(t, ε, β(ε)) (t ∈ T, |ε| < δ)

has the properties of the theorem since

xε(t, 0) = zα(t, 0, 0)β′(0) + y(t) = y(t),

uε(t, 0) = wα(t, 0, 0)β′(0) + v(t) = v(t).

Moreover,

x(t1, ε)− ξ1 = z(t1, ε, β(ε))− ξ1

= g(ε, β(ε)) = 0

so thatx(·, ε) (|ε| < δ) joins the endpoints ofx0. Fi-
nally, for all |ε| < δ andt ∈ Tj , we have

ϕj(u(t, ε)) = ϕj(ū(t, ε, β(ε), σ(t, ε, β(ε))))

= εϕj′(u0(t))v(t)

so that, for alli ∈ Ia(u0(t)) ∪Q = {i1, . . . , ipj},

ϕi(u(t, ε)) = εϕ′i(u0(t))v(t) (|ε| < δ, t ∈ T ).

Therefore, ifi ∈ Ia(u0(t)) andµi(t) = 0 then
ϕi(u(t, ε)) ≤ 0 (0 ≤ ε < δ). If µi(t) > 0 or i ∈ Q
thenϕi(u(t, ε)) = 0 (|ε| < δ).

For the casei ∈ R with µi(t) = 0 and i 6∈
Ia(u0(t)), that is,ϕi(u0(t)) < 0, note that ift ∈ Tj

thenϕi(u0(s)) < 0 for all s ∈ Tj . By (A3) there
existsδj > 0 such that

ϕi(u(s, ε)) < 0 (|ε| < δj , s ∈ Tj).

Diminishing δ > 0 if necessary, so thatδ < min δj ,
it follows that(x(·, ε), u(·, ε)) ∈ Ze(U) (0 ≤ ε < δ)
andµi(t)ϕi(u(t, ε)) = 0 (i ∈ R, t ∈ T , 0 ≤ ε < δ).
This shows that(y, v) ∈ W(x0, u0, µ).

As we show next, assumption (A1) is equivalent
to that of strong normality.

Lemma 5.6Let (x0, u0) ∈ Ze(U). Then the follow-
ing are equivalent:

a. (x0, u0) is strongly normal.
b. (x0, u0) satisfies assumption (A1).

Proof:
(a)⇒ (b): LetZ(t) ∈ Rn×n satisfy

Ż(t) = −Z(t)A(t) (t ∈ T ), Z(t1) = I

and denote byz1, . . . , zn the row vectors ofZ, so that

żi(t) = −A∗(t)zi(t) (t ∈ T, i = 1, . . . , n).

For eacht ∈ T let ϕ̂ = (ϕi1 , . . . , ϕip) where

Ia(u0(t)) ∪Q = {i1, . . . , ip},

that is,i1, . . . , ip are the indicesα ∈ R ∪Q such that
ϕα(u0(t)) = 0, and define

µ̂i(t) = (µ̂i1(t), . . . , µ̂ip(t))

by
µ̂i(t) := Λ−1(t)ϕ̂′(u0(t))B∗(t)zi(t)

whereΛ(t) = ϕ̂′(u0(t))ϕ̂′∗(u0(t)). We extend the
functionµ̂i to include all other indices inR by setting

µi(t) = (µi
1(t), . . . , µ

i
q(t))

where

µi
α(t) :=

{
µ̂i

ir(t) if α = ir, r = 1, . . . , p
0 otherwise.
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Clearly we haveµi
α(t)ϕα(u0(t)) = 0 for all i =

1, . . . , n, α ∈ R, andt ∈ T . Moreover,

ϕ̂′∗(u0(t))µ̂i(t) =



p∑
j=1

∂ϕij

∂u1
(u0(t))µ̂i

ij (t)

...
p∑

j=1

∂ϕij

∂um
(u0(t))µ̂i

ij (t)


= ϕ′∗(u0(t))µi(t).

Now set

vi(t) := B∗(t)zi(t)− ϕ̂′∗(u0(t))µ̂i(t)

and let

cij :=
∫ t1

t0
〈vi(t), vj(t)〉dt.

Note that the functionsv1, . . . , vn are linearly inde-
pendent onT since, otherwise, there would exist con-
stantsa1, . . . , an not all zero such that

0 =
n∑
1

aivi(t)

=
n∑
1

ai[B∗(t)zi(t)− ϕ̂′∗(u0(t))µ̂i(t)]

for all t ∈ T and therefore, if

µ(t) :=
n∑

i=1

aiµ
i(t) (t ∈ T ),

the functionz(t) :=
∑n

1 aizi(t) would be a nonnull
solution to the system

ż(t) = −A∗(t)z(t), B∗(t)z(t)− ϕ′∗(u0(t))µ(t) = 0

with µα(t)ϕα(u0(t)) = 0 (α ∈ R, t ∈ T ). Hence the
rank ofC = (cij) is n. Note also that

ϕ̂′(u0(t))vi(t)

= ϕ̂′(u0(t))B∗(t)zi(t)− Λ(t)µ̂i(t) = 0

and so the second condition of (A1) holds. Now, let
yi be the solution to

ẏ(t) = A(t)y(t) +B(t)vi(t) (t ∈ T ), y(t0) = 0

and observe that

d

dt
〈zi(t), yj(t)〉 = z∗i (t)[A(t)yj(t)

+ B(t)vj(t)]− z∗i (t)A(t)yj(t)

= [v∗i (t) + µ̂i∗(t)ϕ̂′(u0(t))]vj(t)
= 〈vi(t), vj(t)〉

and so

〈zi(t1), yj(t1)〉 = cij (i, j = 1, . . . , n).

Since the right member has rankn andZ(t1) is non-
singular, the matrix(yi

j(t1)) has rankn.

(b)⇒ (a): Suppose we are givenp ∈ X andµ ∈
Uq satisfying

i. µα(t)ϕα(u0(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −A∗(t)p(t) (t ∈ T );
iii. B∗(t)p(t) = ϕ′∗(u0(t))µ(t) (t ∈ T ).
Let (yi, vi) (i = 1, . . . , n) be solutions to

ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T )

such that

a. yi(t0) = 0 (i = 1, . . . , n);
b. |y1(t1) · · · yn(t1)| 6= 0;

c.ϕ′α(u0(t))vi(t) = 0 for all α ∈ Ia(u0(t)) ∪Q,
i = 1, . . . , n, t ∈ T .

Clearly the result will follow if we show that, for
all i = 1, . . . , n, 〈p(t1), yi(t1)〉 = 0, but this is an
immediate consequence of the fact that〈p(t), yi(t)〉 is
constant for allt ∈ T , since

d

dt
〈p(t), yi(t)〉

= p∗(t)A(t)yi(t) + p∗(t)B(t)vi(t)− p∗(t)A(t)yi(t)

= µ∗(t)ϕ′(u0(t))vi(t) = 0.

The previous results imply the following set of
necessary conditions for optimality.

Theorem 5.7Suppose (x0, u0) is a strongly normal
solution to (P) and there exists (p, µ) ∈ X × Uq such
that

a. µα(t) ≥ 0 with µα(t) = 0 if ϕα(u0(t)) < 0
for all α ∈ R, t ∈ T ;

b. ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)) and

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0.
If (y, v) ∈ Z satisfies

i. ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;
iii. v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ),

and (A2) and (A3) hold, then

J((x0, u0, p, µ); (y, v)) ≥ 0.

Proof: Note first that, since(x0, u0) is strongly nor-
mal, Theorem 3.1 implies that the pair(p, µ) is
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unique. By Lemma 5.6,(x0, u0) satisfies assump-
tion (A1). Now, if (y, v) satisfies conditions (i)–
(iii) then (y, v) ∈ Y (x0, u0, µ) and, by Lemma 5.5,
(y, v) ∈ W(x0, u0, µ). The result then follows by
Lemma 5.2.

6 Two numerical examples

Let us end by providing two numerical examples
which illustrate the kind of optimal control problems
one can deal with.

The first is taken up from [14] and it corresponds
to the optimal control of the van der Pol Oscillator. In
the model proposed, the state variables are the voltage
x1(t) and the electric currentx2(t); the control repre-
sents the voltage at the generator. The optimal control
problem is that of minimizing

I(x, u) =
∫ 5

0
[u2(t) + x2

1(t) + x2
2(t)]dt

subject to
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1− x2
1(t)) + u(t),

x1(0) = 1, x2(0) = 0,

−x2(t)− 0.4 ≤ 0 (t ∈ [0, 5]).

This problem is discussed in [14] where the authors
apply a result, based on the solvability of an auxil-
iary Riccati equation related to second order sufficient
conditions, and obtain an optimal local solution to the
problem. A slight modification of the model could in-
volve constraints in the control of the type considered
in this paper, instead of the state constraints, and so
the Hamiltonian would take the form

H = p1x2 + p2[−x1 + x2(1− x2
1) + u]

− u2 − x2
1 − x2

2 − µϕ(u).

Depending on the functionϕ, one can readily verify
the assumptions of Theorems 3.1 or 5.7, and find can-
didates for a solution to the problem.

The second example deals with a weakly normal
solution (x0, u0) to (P) with (p, µ) a pair such that
(x0, u0, p, µ) is an extremal (it satisfies (a) and (b) of
Theorem 5.7), but

J((x0, u0, p, µ); (y, v)) < 0

for some(y, v) ∈ Z satisfying (i) and (ii) of Theorem
5.7 withv(t) ∈ τ2(u0(t)) (t ∈ T ).

Consider the problem (P) of minimizing

I(x, u) =
∫ 1

0
[u1(t) + u2

2(t)]dt

subject to
ẋ(t) = u2

1(t) + u2(t),

u1(t) ≥ 0, u1(t) ≥ u2(t) (t ∈ [0, 1])

andx(0) = x(1) = 0.
In this case we haveT = [0, 1], n = 1, m = r =

q = 2, ξ0 = ξ1 = 0 and, for anyt ∈ T , x ∈ R, and
u ∈ R2 with u = (u1, u2),

L(t, x, u) = u1 + u2
2, f(t, x, u) = u2

1 + u2,

ϕ1(u) = −u1, ϕ2(u) = u2 − u1.

Observe first that

H(t, x, u, p, µ, 1)

= p(u2
1 + u2)− u1 − u2

2 + (µ1 + µ2)u1 − µ2u2

so that

Hu(t, x, u, p, µ, 1)

= (2pu1 − 1 + µ1 + µ2, p− 2u2 − µ2),

Huu(t, x, u, p, µ, 1) =
(

2p 0
0 −2

)
.

Therefore, for any(x, u, p, µ) ∈ Z × X × U2 and
(y, v) ∈ Z,

J((x, u, p, µ); (y, v))

= −2
∫ 1

0
[p(t)v2

1(t)− v2
2(t)]dt.

Clearly(x0, u0) ≡ (0, 0) solves the problem. Since

ϕ′1(u0(t)) = (−1, 0),

ϕ′2(u0(t)) = (−1, 1),

we have

τ0(u0(t)) = {h ∈ R2 | −h1 = 0, −h1 + h2 = 0}

τ1(u0(t), µ(t)) = {h ∈ R2 | −h1 ≤ 0 if µ1(t) = 0,

−h1 = 0 if µ1(t) > 0,

−h1 + h2 ≤ 0 if µ2(t) = 0,

−h1 + h2 = 0 if µ2(t) > 0},

τ2(u0(t)) = {h ∈ R2 | −h1 ≤ 0, −h1 + h2 ≤ 0}.

Now, since

fx[t] = 0, fu[t] = (0, 1),

the system

ż(t) = −A∗(t)z(t) = 0,
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z∗(t)B(t)h = z(t)h2 = 0

for all (h1, h2) ∈ τ0(u0(t)) (t ∈ T ) has nonnull solu-
tions and therefore(x0, u0) is not τ0-regular. On the
other hand,z ≡ 0 is the only solution to the system

ż(t) = 0, z(t)h2 ≤ 0

for all (h1, h2) ∈ τ2(u0(t)) (t ∈ T ) since both
(0,−1) and(1, 1) belong toτ2(u0(t)) implying that
−z(t) ≤ 0 andz(t) ≤ 0 (t ∈ T ), and so(x0, u0) is
τ2-regular. Letµ = (µ1, µ2) ≡ (0, 1) andp ≡ 1 so
that

i. µα(t) ≥ 0 andµα(t)ϕα(u0(t)) = 0 for α =
1, 2 andt ∈ T ;

ii. ṗ(t) = 0 = −Hx(t, x0(t), u0(t), p(t), µ(t), 1)
for all t ∈ T ;

iii. For all t ∈ T we have

Hu(t, x0(t), u0(t), p(t), µ(t), 1)

= (µ1(t) + µ2(t)− 1, p(t)− µ2(t)) = (0, 0)

and so(x0, u0, p, µ) is an extremal with(x0, u0) a
weakly normal solution to the problem. Note also that

τ1(u0(t), µ(t)) =

{(h1, h2) ∈ R2 | −h1 ≤ 0, h1 = h2}

and therefore the system

ż(t) = 0,

z(t)h2 ≤ 0 for all (h1, h2) ∈ τ1(u0(t), µ(t)) (t ∈ T )

has nonnull solutions implying that(x0, u0, µ) is not
τ1-regular.

Now, if we setv = (v1, v2) ≡ (1, 0) andy ≡ 0,
thenv(t) ∈ τ2(u0(t)), (y, v) solves

ẏ(t) = v2(t) (t ∈ T )

together withy(0) = y(1) = 0, and so it satisfies (i)
and (ii) of Theorem 5.7. However,

J((x0, u0, p, µ); (y, v)) = −2 < 0.

7 Conclusions

This paper considers optimal control problems involv-
ing equality and inequality constraints in the control
function which might yield negative second varia-
tions.

It studies the nonnegativity of the second varia-
tion in certain sets of critical directions, defined in

terms of differentially admissible variations, as a nec-
essary condition for optimality under different regu-
larity assumptions.

Two different results are proved in this respect.
A first result shows that, under mild assumptions, if
the Lagrangian does not depend on the state, then
τ1-regularity implies the nonnegativity of the second
variation in the convex cone defined precisely by the
space ofτ1 or modified admissible variations.

A second result deals with strongly normal so-
lutions, that is,τ0-regular optimal controls, and it is
shown that, by imposing a condition related to inac-
tive constraints, the desired second order necessary
condition expressed in terms of modified admissible
variations does hold.
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