WSEAS TRANSACTIONS on SYSTEMS and CONTROL Javier F. Rosenblueth

Modified Critical Directions for Inequality Control Constraints

JAVIER F ROSENBLUETH
National Autonomous University of Mexico
Applied Mathematics and Systems Research Institute
Apartado Postal 20-126, Mexico DF 01000
MEXICO
jfri@unam.mx

Abstract: For optimal control problems involving equality and inequality constraints in the control functions, some
fundamental questions related to second order necessary conditions are posed. In particular, for a wide range o
problems, we provide a direct derivation of such conditions in terms of a certain quadratic function, under some
normality assumptions, and on a specific convex set of differentially admissible variations defining the critical
directions. The question of whether this result can be improved by weakening the assumptions and modifying the
set of critical directions by enlarging it is also studied. Under certain assumptions, an affirmative answer to that
question is provided.
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1 Introduction whereR ={1,...,r}, Q={r+1,...,q}.

We have chosen this fixed-endpoint control prob-
lem of Lagrange for simplicity of exposition, and to
keep notational complexity to a minimum, but no dif-
ficulties arise in extending the theory to follow to
Bolza problems with possible variable endpoints (see,
for example, [12, 13] for details).

We shall find convenient to use the following no-
tation. Denote byX the space of piecewisg! func-
tions mappindl” to R", by U, the space of piecewise
continuous functions mappirf to R* (k € N), and
setZ := X X Up,.

Elements ofZ will be calledprocesseand a pro-
cess(x, u) is admissiblef it satisfies the constraints.
An admissible procegs, u) is asolutionto the prob-
lem (P) if I(x,u) < I(y,v) for any admissible pro-
cess(y, v).

We assume thak, f andy are of clasC? and
theq x (m + r)-dimensional matrix

This paper deals with some fundamental questions re-
lated to the derivation of second order necessary con-
ditions for certain classes of optimal control problems
involving equality and inequality constraints in the
control functions.

In particular, we shall be concerned with differ-
ent convex sets of differentially admissible variations
defining the critical directions of the extremal under
consideration, as well as the assumptions imposed
on the optimal control which may imply, as a neces-
sary condition for optimality, the nonnegativity of a
guadratic form in those sets.

The problem that concerns us can be stated as fol-
lows. Suppose we are given an interat= [to, t1]
in R, two points&g, & in R™, and functionsL and f
mappingl’ x R” x R™ to R andR" respectively, and
© = (¢1,-..,pq) MappingR™ to RY (¢ < m).

Consider the problem, which we label (P), of min-
imizing the functional 0pi

(6uk (52'0141004)
t1
I(z,u) := L(t,z(t),u(t))dt (i=1,.

" g a=1,....r; k=1,...,m) has rank

qginU (heredn =1, do3 = 0 (o # 3)), where
ith 7 n i gl
over all couplegz, u) with z: T'— R™ piecewiseC' U= {u e R™ | ga(u) <0 (a € R),

andu: T — R™ piecewise continuous, satisfying

) u) =20 € .
#(t) = £(t,2(t), u(t)) (t € T); el =00pedt
This condition is equivalent to the condition that,
z(to) = &o, z(t1) = & at each point. in U, the matrix
Pa(u(t)) < 0andpg(u(t)) =0 d;
(i =1, .. ip; k=1,...,m)
(eR, BeQ, teT), ouk
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has rankp, whereiy, . . ., i, are the indices €¢ RUQ
such thatp;(u) = 0 (see [9]).

The importance of deriving second order neces-
sary conditions in optimal control, as well as ques-
tions related to existence of optimal solutions, not
only from a theoretical point of view but also due to a
wide range of applications, is fully explained in [1-9,
11, 1519, 22-24] and references therein.

In particular, [1] considers an electromechanical
system including a controlled voltage converter, an

electrical drive and a mechanism as a two-mass design

scheme. The system studied in [1] provides a reliable
description of the position control processes for both

azimuthal and elevation axes of a ground telescope ro-
tary support.

To give another illustrative example, we refer to
[16] which includes a full discussion on how, by solv-
ing numerically a certain Riccati equation related to
a problem with constraints of the type we consider in
this paper, one can find a solution to the classical prob-
lem of a planar Earth-Mars orbit transfer with minimal
transfer time.

Two fundamental aspects of the theory of sec-
ond order necessary conditions for this kind of prob-
lems are, firstly, to specify the set of critical direc-
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2 Notation and regularity

For all x € R define the following subsets of indices
of R:

Lo(p) :={a € R| pa =0},

Lp(p) :=={a € R| pa > 0}
and, for allu € R™, consider the set aictive indices
in u given by

I,(u) :={a € R | pa(u) = 0}.

Foranyu € R™ andu € R? define the setsy (u),
71(u, ) andry(u) as follows:

To(u) :={h € R™ | pi(u)h =0 (i € I,(u) UQ)}.
i(u, p) == {h € R™ | gf(u)h < 0
(i € Ia(u) NTo(p)),
¢j(u)h =0 (j € Tp(p) UQ)}
Ta(u) :={h € R™ | ¢l(u)h <0 (i € I,(u)),

Pi(u)h=0(j € Q)}.

Based on these sets, we define regularity as fol-
lows. Let (z,u) be an admissible process and let
p € Uy with

tions where the second variations can be assured to  #a(t) > 0, pa(t)pa(u(t)) =0(a e R, teT).

be nonnegative and, secondly, to find the assumptions

required so that the above condition holds.

These aspects are equally relevant for optimiza-
tion problems in finite dimensional spaces (see [10]).
Some examples illustrating the difficulties encoun-
tered when dealing with those two questions can be
found in [20, 21]. New results related to these ques-
tions, and applicable to a wide range of optimal con-
trol problems, are presented in this paper.

This paper is organized as follows. In Section 2
we introduce some notation and exhibit three cones
of admissible variations together with the definitions
of regularity we shall deal with. Section 3 poses a

Fort € T define
A(t) = fw(ta x(t)7 u(t))7
B(t) = fu(t> x(t)7 U(t)),

and denote by* the transpose. We shall say that

a. (x,u) is Tp-regular (or strongly normal) if
z = 0is the only solution to the system

5(t) = —A"(D)=(0),

Z()B(t)h = 0forall h € mo(u(t)) (t € T).

b. (x,u,u) is mp-regularif z = 0 is the only so-

basic question on second order necessary conditions lution to the system

which relates some regularity assumptions with a cer-
tain set of admissible directions. An answer to that
question for a particular case is the content of Section
4. In Section 5 we provide a direct derivation of sec-
ond order necessary conditions under strong normal-
ity assumptions which enlarges the classical set of ad-
missible variations where the corresponding quadratic
form is nonnegative. Finally, in Section 6, we provide
two numerical examples illustrating some of the ideas
treated in the paper.
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(t) = —A(1)=(b),

2*(t)B(t)h < 0forall h € 7 (u(t), u(t)) (t € T).

C. (x,u) is mo-regular (or weakly normglif z = 0
is the only solution to the system

() = —A(t)=(t),

2*(t)B(t)h < 0forall h € mo(u(t)) (t € T).
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Forall (t,z,u,p,u) INT x R" x R™ x R™ x RY
let
H(t,z,u,p,p) := (p, f(t,7,u))
- L(t,l‘,U) - <,U,(,0('U/)>,

and, forall(z,u,p, n) € Z x X x U, and(y,v) €
define

Z,

t1
20t y(t),
to

J((m,u,p,,u);(y,v)) : 'U(t))dt

where, for all(t,y,v) € T x R® x R™,

[(ys Heo (8)y) + 2(y, Hyu(t)v)

+ (v, Hyp (t)0)]
andH (t) denotesH (t, z(t), u(t), p(t), pu(t)).

QQ(t7 Y, ’U) =

3 The main question

The next result (second order necessary conditions)
is well-known in the literature. In particular, in [7],
it was derived by reducing the original problem into
a problem involving only equality constraints in the
control.

Given an admissible procegsy, ug) we shall de-
note by/[t] the point(¢, zo(t), uo(t)).

Theorem 3.1Suppose (g, ug) is a solution to (P) and
there exists (p, 1) € X x U, such that

a. jia(t) > 0 and pa(Dpaluo(t))
a € Randt €T

b. p(t) = —f7[t]p(t) + L3 1]
(= —H;(t, zo(t), uo(t), p(t), u(t)));
c.0 = filtlp(t) 0™ (uo(t)) pu(t)
(= Huy(t,zo(t), uo(t), p(t), u(t))).
If (zg, ug) is strongly normal then (p, 1) is unique and

J((zo, w0, p, ); (y,v)) >0

for aH (y,v) € Z satistying

= 0 for all

— Lyt -

L9(0) = Follly(®) + fultlot) (t € T):
ii. y(to) = y(t1) = 0;
ii. v(t) € To(uo(t)) (t €T).

It is important to mention that the same set of
“admissible variations” defined by relations (i)—(iii)
yields second order necessary conditions in other ref-
erences (see, for example, [2—4, 11, 18]). Those con-
ditions are obtained in different ways and, in some
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cases, under different assumptions, but they are all ex-
pressed in terms of the set of variations that include

70 (uo(t)) explicitly.
On the other hand, the same device used in [7],
which consists in defining the functions

va(u,w) = pa(u) + (w*)? (a € R),

Yp(u,w) = pp(u) (B € Q),

appears in [23] together with an application of the re-
sults obtained in [22].

The following example shows that the conclusion
of Theorem 3.1 may not hold if the solution to the
problem is weakly (and not strongly) normal.

Example 3.2Let a,b > 0 and consider the problem
of minimizing

Iz, u) = /0 ua(t) + aus() bt

subject to(z, u) € Z and

() = uf(t) 4+ ua(t) — bus(t) (t € [0,1]);

2(0) = 2(1) = 0;

uz(t) > 0, uz(t) > 0 (t € [0,1]).
Inthiscasel' = [0,1],n=1,m=3,r =q =2,

=& =0and, forallt € T,z € R, andu =
(w1, u2,us),

L(t7$7u) = u2 + aus, f(t,:L‘,U) :U%—FUQ—b’LLg,
1(u) = —uz, @o(u) = —us3.
We have
H(t,z,u,p,p) =
p(u% + ug — bug) — ug — aug + pug + pous
and so
Hu(t,x,u,p,,u) = (2pu17p_1+ula_pb_a+u2)7
2p 0 0
Huu(t,$,u,p, ,LL) = 0 00 .
0O 0 O

It follows that, for all (z,u,p, u) € Z x X x Us and
(y,v) € Z, the second variation is given by

_ /0 Cop(t)e (1)t

It is clear from the way the problem is posed that

J((:L“,u,p, N) (y U)) =
(0,0)

(w0, up) =
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solves it. Now, define

/’L:(Mlau2)z(07a+b)a pElv
and note thafz, ug, p, 1) satisfies conditions (a)—(c)
of Theorem 3.1.

In order to check the regularity assumptions, note

first that

¢1(u) = (0,~1,0),
pa(u) = (0,0, -1).
Therefore
T()(Uo( )) = {h ‘ —hg = 0, —h3 = 0},
T1(uo(t), u(t)) ={h | —ha <0, —hg = 0},
m2(uo(t)) = {h | —h2 <0, —h3 < 0}.
Since

fa(t,xo(t), up(t)) =0,
fu(t,.l‘o(t),uO(t)) = (07 L, _b)>

the system
2(t) = —A*(t)z(t) = 0,

()B(t)h = 2(t)(ha — bhs) = 0

for all (hy1, he, h3) € To(uo(t)) (t € T') has nontrivial
solutions and s@x, ug) is notry-regular.
On the other hand; = 0 is the only solution to
the system
2(t) =0, z(t)(he — bhs) <0
for all (h1,he, h3) € m2(up(t)) (t € T) since both
(0,1,0) and (0,0,1) belong toTs(up(t)) implying
thatz(t) < 0and—z(t) <0 (t € T'), so that(xg, up)
is To-regular.
Finally, the system
2(t) =0, z(t)(hg — bh3) <0
for all (hl,hz,hg) S Tl(u()(t),,u(t)) (t < T) has
nontrivial solutions implying thatz, ug, 1) is notr; -
regular.
Letv = (vy,va,v3) =
(y, v) solves the system

(1,0,0) andy = 0. Then

y<t) = fx[t]y(t> + fu[t]v(t)
V9 (t) — bvg(t) (t S T),
y(0) = y(1) = 0, v(t) € T0(uo(t)), and
1
T(@ouo,p i ) = = [ 2p(eio)dr
= —2<0.1
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It is of interest to know if the second order nec-
essary condition of Theorem 3.1 holds in a larger set
and/or under weaker assumptions. In particular, we
would like to know if the theorem remains valid if we
replace condition (iii) by

v(t) € Ti(uo(t), p(t)) (¢ € T)

and also weaken the strong normality assumption on
(z0,up) @assuming onlyr -regularity of (g, ug, ).

Explicitly, the question is if the following result
holds.

Theorem 3.3Suppose (g, ug) is a solution to (P) and
there exists (p, ) € X x U, such that

a. pa(t) > 0 with o (t) = 0 if po(uo(t)) < 0
forallaa € R, t € T;

b. p(t) = _H::(ta:I:O(t)vu0(t)7p(t)7/1’(t)) and
Hu<t7x0(t)7 uO(t)vp(t)7/j’(t)) = 0.

If (20, wo, ) is 71 -regular, then

J((Jjo, uo, P, /’L)v (y7 U)) >0

,v) € Z satisfying

(t) = faltly(t) + fultlv(t) (t € T);
ii. y(to) = y(t1) = 0;
iii. v(t) € T1(uo(t), u(t) (t €T).

for all (y

This question was posed in [12, 13], where it is
proved that Theorem 3.3 is valid assuming that the
control setl is convex and the functiof, (uo(-)) is
piecewise constant. In the next two sections we give
partial answers to this question.

For comparison reasons let us briefly state the
main result, related to this question, givenin [13]. The
problem considered there is that of minimizing

t1
L(t,z(t),u(t))dt
to
subject to
a.z: T — R"is piecewiseC! andu: T — R™ is
piecewise continuous;

b. &(t) = f(t,z(t), u(t));
C. w(to) = &, x(tl) eC;
d. (£, (), u(t) € A,

wheretg =0, T = [to,tl], & eR™C = {l’ € R" |

o(z) =0}, A= Q x U whereQ is a relatively open

subset off’ x R™ and
U={ueR™|g(u)<0@Gel),

gi(u) =0 (i € I*)},
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I', I? are two disjoint finite index sets: A — R",
L:A—- R {R" - R, o:R" — R ¢i:R™ — R
(i € I'UI?).

For this problem, second order necessary condi-
tions are obtained in [13] as well as a generalized no-
tion of conjugate points.

The main result of the paper (Theorem 4.6) states
that, assuming

e the control seU is convex,

e the couple(zg, up) is a regular extremal which
actually solves the problem,

e the functionl, (uo(-)) is piecewise constant,
then the underlying open time interval contains no
generalized conjugate points to. This result is an
immediate consequence of a previous result (Theo-
rem 4.3), stated in terms of the second variation which

shows that, in the regular case, the existence of a gen-

eralized conjugate point implies the existence of an
admissible variation for which the second variation is
negative. The term “regular” in [13], when the prob-
lem posed above is inserted in the context of this pa-
per, corresponds precisely tg-regularity as defined
in Section 2.

It is important to mention that, in the theory to
follow in the next two sections, no convexity assump-
tions are imposed.

4 A particular case

Let us begin by stating a definition and some auxiliary
results taken up from [9].

Definition 4.1 A set.A C R x R? will be calledad-
missibleif, given (s,v) € A, there existe > 0 and
u:[s — €,s + ¢] — R? continuous whose elements
(t,u(t)) areinAandu(s) = v. Its elements are called
admissible elements.

Suppose we are given an interdal= [to, t1], an
admissible sefd, andF': A — R continuous. Let

C :={u:T — R? | u is piecewise continuous and

(t,u(t)) € A(teT)}
and consider the problem of minimizingonC where
t1

F(t,u(t))dt.

to

J(u) :

Lemma 4.2 Let ug € C. Then ug minimizes J on C
if and only if F(t,u) > F(t,uo(t)) (t € T) when-
ever (t,u) € A. Moreover, these relations imply that
F(-,up(+)) is continuous on T.
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Lemma 4.3 Let D be a region of points in R x RY,
©=(p1,...,m): D — R™ of class C, and let

A={(t,u) €D | puat,u) <0 (ax e A),
pp(t,u) =0(5 € B)}

where A = {1,...,p}, B={p+1,...,m}. Assume
that the m x (m + q)-dimensional matrix
0P 5 B
ENa af¥p ) =
91 91 0
oul dus 1
Opm Opm
oul oud pm

has rank m on A. Then A is admissible.

Lemma 4.4LetD be aregion of points in RxRY, p =
(¢1,---,¢m):D — R™ and f:D — R continuous
functions having continuous derivatives with respect
tow on D, and let

A={(t,u) € D | palt,u) <0 (axe A,

pp(t,u) =0 (6 € B)}

where A = {1,...,p}, B={p+1,...,m}. Assume
that the m x (q + p)-dimensional matrix

(5
Ouk
(a=1,....m; B=1,...
m on D. Consider the set

5&6906)

,p; k=1,...,q) has rank

C :={w:T — RY | u is piecewise continuous and

(t,u(t)) e A(teT)}.
Let uy € C and suppose that f(t,u) > f(t,uo(t))

(t € T) whenever (t,u) € A. Then there exists a
unique p: T — R™ such that, if

F(t7u>,u) = f(t>u) + <:ua (p(t, u)>7

then
Fult,uo(0),u(t)) =0 (t € T).

Moreover, j14(t) > 0 (a € A, t € T') and p1o(t) = 0
whenever ¢, (t,uo(t)) < 0. The function p is piece-
wise continuous on T and continuous at each point of
continuity of ug.

Let us now return to our original optimal control
problem (P). Throughout this section we shall con-
sider the case wheh(t, z,u) = L(t,u), i.e., L does
not depend on.
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For our problem, define
C={uely,| (t,u(t) e A(teT)},
where
A={(t,u) € T x R™ | po(u) <0 (a € R),

pp(u) =0 (8 €Q)}

Lemma 4.5 Suppose ug minimizes I over C. Then
there exists a unique v € Uy such that, if

F(t,u,v) = L(t,u) + (v, p(u))
then
Fu(t,up(t),v(t)) =0.
Moreover, v, (t) > 0 with
Vo(t)pa(up(t)) =0 (e R, t €T),

and
<h7 Fuu(t7 UO(t)7

forall h € 11(ug(t),v(t)).

V(t)h) > 0

Proof: Sinceug minimizes

Iw) = [ Lt ut))dt

to

overC and, by Lemma 4.34 is admissible, it follows
by Lemma 4.2 that

L(t,u) > L(t,uo(t) (t€T)
whenevel(t, u) € A. Therefore, by Lemma 4.4, there
exists a unique € U, satisfying the first assertions of

the lemma. The last assertion follows sir{¢gug(t))
is normal with respect tod and so normal with re-

Javier F. Rosenblueth

subject to

i(t) = u?(t), 2(0) = (1) = 0, u(t) <O0.
Then(zg,uo) = (0,0) solves (P), being the only ad-
missible process, buty = 0 does not minimizd over
the set

C={uelh|u(t) <0}

Proposition 4.7 Suppose (zg, ug) solves (P) and there
exists (p, 1) € X x U, satisfying

a. ia(t) > 0 and pio(t)pa(uo(t)) = 0 for all
a€ R, teT,;
nmw:—AtmwaeT>
C. p*(t)B(t) = Lu(t,uo(t)) + p*(t)¢' (uo(t))
(t e T)

Suppose also that ug minimizes I over C. If p = 0
then

J((xo, w0, p, 1); (y,v)) >0

forall (y,v) € Z withv(t) € T (uo(t), u(t)) (t € T).
In particular, if (o, ug, i) is 71 -regular, then p = 0.

Proof: Let

F(t,u,v) = L(t,u) + (v, o(u)).

By Lemma 4.5, there exists a uniquec U/, such that
Fu(t, uo(t),v(t)) = Lu(t, uo(t)) + v* ()¢’ (uo(t))
(teT). (1)
If p = 0then, by (c), also
Fu(t,uo(t), p(t)) = 0.

By uniquenessy = v. By Lemma 4.5 we also have

=0

(h, Fuu(t,uo(t), p(t))h) >0

forall h € 71 (uo(t), u(t)). Note that

spect to the set of modified tangential constraints (a

full account of these ideas can be seen in [B]). H(t,z,u,p,u) = —F(t,u, p)
We are now in a position to prove one of the main and so

results of the paper. It states that Theorem 3.3 does

indeed hold in the event thdt does not depend an 2Q(t, y,v) = (v, Fyu(t, uo(t), p(t))v).

and the optimal control also minimizéoverC.

Note that this last assumption is needed in the Hence
proof since the optimality of the proce&sy, uy) does
not imply that of the control,y overC.

J(($07 uop, p, N)7 (y7 U)) > 0

forall (y,v) € Zwithv(t) € 71 (uo(t), u(t)) (t € T).
Suppose now thdteg, uo, ) is 71-regular. By (c)

E le 4.6 A simpl le of this fact is gi
xample Simpe example of this 1act 1S gVeN 4 hd (1), we have

by the problem of minimizing
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and so, for all € 7y (ug(t), pu(t)),

N(t) = {o € L(uo(t)) | palt) = 0}.

Thus p*(¢t)B(t)h > 0 for all b € 71 (up(t), pu(t)).
This implies that-p is a solution to the system

(t) = AT ()=(1),

forall h € 7y (u(t), u(t)) (t € T). Since(xo,uo, 1)
is Ty-regular,p = 0.1

F(6)B()h <0

5 Adirect approach

Javier F. Rosenblueth

Then
J((z0, w0, p; p1); (y,v)) >0

for all (y,v) € W(xo, uo, i1).
Proof: Define, for all(z,u) € Z,

K(z,u) := (p(tr), &1) — (p(to), €0)

+ ttl F(t, 2(t), u(t))dt

where, for all(t, z,u) € T x R® x R™,
F(t,z,u) == L(t,x,u) — (p(t), f(t,z,u))

+ (u(t), p(u)) — (B(t), ).
Observe that

F(twr’u) = —H(t,x,u,p(t),,u(t)) - (p(t),x)

In the previous section we proved that Theorem 3.3 an(, if (z, u) is admissible, then

does indeed hold if some assumptions are imposed on

the integrand. and the optimal control.
In this section we shall derive a simpler version of

Theorem 3.3 by proving that, for certain cases, it does

t1

K(r,u) = I@,u)+ [ (ut), (u(t))dt.

to

hold under a strong normality assumption instead of Let (y,v) € W(xo, uo, 1) and lets > 0 and

that of r-regularity. In other words, the classical set

of admissible variations is enlarged, thus obtaining an
improved set of necessary conditions, but the assump-

tions on the control remain those gf-regularity.
To do so, let us first introduce a set whose ele-

ments are embedded into a one-parameter family of
admissible processes and for which the derivation of

second order conditions is straightforward.

Definition 5.1 For all (xo, ug) admissible ang. € U,
denote byW(xo, ug, ) the set of all(y,v) € Z for
which there exist > 0 and a one-parameter family

(.T(-, 6)? u('? 6))

of processes such that
i (x(t,0),u(t,0)) = (zo(t),uo(t)) (t € T);
i. (2e(t,0), ue(t,0)) = (y(t), v(t)) (t € T);
iii. (x(-,€),u(-,€)) is admissibld0 < € < 9);
V. to(t)pa(u(t,e)) =0foralla € R, t € T,
0<e<d.

(lef < 0)

Lemma 5.2 Suppose (xg, ug) solves (P) and there ex-
ists (p, 1) € X x Uy, such that

a. pa(t) > 0 with pa(t) = 0 if po(up(t)) < 0
forallao € R, t € T}

b. p(t) = _H;(ta xO(t)vuO(t)vp(t)7u(t)) and
Hu(t7 ZL‘o(t), UO(t)ap(t)> ,u(t)) = 0.
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(l’(-, 6)? ’LL(-, 6))

be as in Definition 5.1. Then

(lef < 0)

g(e) == K(z(-,€),u(-€)) (|| <9)
satisfies
g(e) I(x(-,e),u(-,e)) > I(%o,Uo)
= K(zg,up) = g(0) (0 <e<d).
Note that

Fx[ﬂ = _Hx(ter(t)?uO(t)ap(t)vu(t)) _p*<t) = 07

Fylt] = —Huy(t, zo(t), uo(t), p(t), u(t)) = 0
and thereforg’(0) = 0. Consequently

g"(0) = K" (w0, uo); (y,v))
J((zo, uo, p, p); (y,v)). I

0

A

Definition 5.3 For all (g, ug) admissible angk € U,
denote byY (zg, ug, 1) the set of all(y, v) € Z satis-

fying
Lg(t) = faltly(t) + fultlo(t) (¢ € T);
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Note 5.4 For all (xg,ug) € Z.(U) and p € Uy,
W(Q?O,UO,,U,) - Y(anUOaM)'

Proof: Let (y,v) € W(xo,up, ) and lets > 0 and
(z(-,€),u(-,€)) (Je] < J) be as in Definition 5.1. By
5.1(iii) we have, foralD < e < 4,

(t,€) = f(t,z(t,€), ult,e))

z(to,€) =&, x(t1,€) =&
Also by 5.1(iii) we have, for al(t,e) € T' x [0, 0),

(t € T)a

va(u(t,e)) <0 (o€ R),
pp(u(t,e)) =0 (B€Q).
Fixi € RUQ andt € T, and sety(e) := ¢;(u(t,¢€))
so that
7'(0) = @i (uo(t))v(t).
If i € I,(uo(t)) theny/'(0) < 0 and, if u;(t) > 0 or

i € @, theny = 0. Thus 5.3(i) and (ii) hold implying
that(y7 ) < Y($07u07:u'> 1

Let us now show that, under certain conditions,
Y (x0, ug, 1) and W(zg, up, ) coincide. We shall
invoke the following assumptions related to an ad-
missible procesqzp,up) and a processy,v) €
Y(I’o,uO,,U,).

(Al) Thereexisty;,v;) (i =1,...,

y(t) = fx[tly(t) + fultlo(?)

and such thaty;(tp) = 0 for all i =
lya(t) -~ yn(t1)| # 0O, andy, (uo(t))vi(t)
alla € I(up(t)UQ,i=1,...,n,t€T.

(A2) I,(up(-))is piecewise constant.

(A3) LetTy,...,Ts denote the subintervals @f
wherel,(ug(-)) is constant and., v, vy, ..., v, are
continuous. If there existc R andt € T; such that
©i(up(t)) < 0, thenT} is closed.

n) satisfying
(teT)

1,...,n,
= 0 for

Lemma 5.5 Suppose (xg,up) is an admissible pro-
cess and p € Uy with po(t) > 0 (a € R, t € T).
If (y,v) € Y (xo,up,n) and (Al)—(A3) hold then
(ya U) € W(l’o, uo, M)

Proof: Forallj = 1,...,s andt € Tj, letp; be
the cardinality ofl, (uo(t)) U @ and denote by’ the
function mappindR™ to RP7 given by

' (u) = (i (u), - 01, (u)
where I, (uo(t)) U Q = {i1,...,ip, }. Forallj =
1,...,s define

u(t, e, a,\) =
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) + ev(t ) + @7 (ug(t)) A

—|— Z om)Z

forall (t,e,a,\) € T; x R x R" x RPi and let

B (t e, a,\) := (t)v(t).

@ (a(t, e, N)) — e?’ (ug
Note thath/(¢,0,0,0) = 0 and
[B(,0,0,0)] = [A; (1) £ 0 (t€Ty)

whereA; (t) = @7 (ug(t))p?"™* (uo(t)). By the implicit
function theorem, there exist > 0 and functions

ol: Ty x (=vj,v5) % (—vj,v5)" — RV

such that, for alt € T}, 07(t,0,0) = 0, o/ (¢,
C? and

. ) is
hj(t, €, a,aj(t,e,a)) =

O (U(t, e, a0, 07 (t, €, ))) — e? (up(t))v(t) = 0.

Let v := min{y;}; and leto(t,¢,a) := o/ (t,€,a)
(teTjj=1,...,s || <v,|oi] <v). Thus

Ot e, o, 0(t e, 0))) =

e (up(t))v(t) (t €Ty, le| <v, |ay] < v).
Taking the derivative with respect to and «; at
(e,a) = (0,0) we get

0 = ¢’ (uo () [v(t) + " (uo(t))oe(t, 0,0)]

— ¢ (uo())o(t) = A;(t)oe(t,0,0),
0 = ¥ (uo(t))[vi(t) + ¢*" (uo(t))7a, (%, 0, 0)]

Aj(t)oa,(t,0,0)

and, thereforeg(¢,0,0) = 0,4,(¢,0,0) =0 (t € T').

Define now
w(t, e, a) := u(t, e, a,0(t, €, ))

and observe that, in view of the above relations, we
have

we(,0,0) = v(t), wa,(t,0,0) =vi(t) (teT).

By the embedding theorem of differential equations,
the equations

(t) = f(t, 2(1),

have unique solutions

w(t, ) a)) (t S T)? Z(tO) = &o

Z(t,ﬁ,()é) (t € Tv |6| <n, |az’ < 77)
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with 0 < n < v, such thatz(¢,0,0) = zo(t).
The function z(t, ¢, ) is continuous and has con-
tinuous first and second derivatives with respect to
the variables, a1, ..., a,. The functionsi(¢, ¢, o)
and their first and second derivatives with respect to

€,a1,...,q, are piecewise continuous with respect
to t. By differentiation with respect te and o; at
(e,a) = (0,0) itis found that
2¢(t,0,0) = A(t)z.(t,0,0) + B(t)v(t),
Ze(t()a 07 0) — 07
Za;(t,0,0) = A(t)zq,(t,0,0) + B(t)v;(t),

2, (t0,0,0) = 0

and therefore
2¢(t,0,0) = y(t), 2zq,(t,0,0) = y;(t)

Let S := (—n,n) and defing: S x S™ — R" by

(teT).

g(e,a) == z(t1, €, @) — &1.
Note thaty(0,0) = 0 and|g,(0,0)| = |M| # 0 where
M = (y1(t1) -~ yn(t1))-

By the implicit function theorem there exiBt< ¢ <
nandg: (—6,8) — R™ of classC? such thaf3(0) =
andg(e, B(e)) = 0 (|¢] < §). We have, taking the
derivative with respect teate = 0, that

0= 9¢(0,0) + ga(0,0)5'(0)

= y(t1) + MB'(0) = MB'(0)

implying that 3/(0) = 0. By continuity we may
choosed > 0 so that|g;(e)| < n for all |e] < 0,
i =1,...,n. The one-parameter family

x(t,€) := z(t, €, B(e)),
u(t,€) = w(t,e,B(e)) (t€T, |e] <)
has the properties of the theorem since

xe(t’ 0) = Zoz(ta 0, O)ﬂ,(O) + y(t> = y(t),

ue(t,0) = wa(t,0,0)8'(0) + v(t) = v(¢).

Moreover,
z(t,e) =& = z(t1,¢6,B(e)) —
= 9g(,8(e)) =0

so thatz(-, €) (Je| < ¢) joins the endpoints aofy. Fi-
nally, for all |¢] < § andt € T);, we have

@ (u(t,€)) = ¢’ (ult, ¢, B(e), o(t e, B(c))))
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= &0’ (uo(1))u(t)
so that, for alli € I,(uo(t)) UQ = {i1,...,ip, },
pi(u(t,e)) = epi(uo(t))v(t) (le| <4, teT).

Therefore, ifi € I,(uo(t)) andp;(t) = 0 then
pi(u(t,€)) <0(0 <e<d). If p(t) >00rie@
thennpi(u(t,e)) =0 ([e] <9).

For the case € R with p;(t) = 0 andi ¢
I,(up(t)), that is,¢;(up(t)) < 0, note that ift € T}
theny;(ug(s)) < 0 forall s € 7. By (A3) there
existsd; > 0 such that

vi(u(s,€)) <0 (le] <6, s €Ty).

Diminishingé > 0 if necessary, so that < mind;,
it follows that (z(-, €),u(-,€)) € Ze(U) (0 < € < 0)
andu;(t)pi(u(t,e)) =00 € R, t € T,0 < e < ).
This shows thaty, v) € W(zo, ug, it).1

As we show next, assumption (Al) is equivalent
to that of strong normality.

Lemma 5.6 Let (zo,uo) € Z.(U). Then the follow-
ing are equivalent:

a. (zo,uo) is strongly normal.
b. (zo, ug) satisfies assumption (Al).

Proof:

(@)= (b): LetZ(t) € R™*"™ satisfy

Zt)=—ZMWARM) teT), Zt)=1I
and denote by, ...
G(t) = —A(H)z(t)

Foreacht € T'letp =

, zn, the row vectors of, so that
teT,i=1,...,n).
(@31, - - -+ i,) Where
() UQ = {i1,....ip},

thatis,iq, ..., 7, are the indicesr € R U @ such that
va(uo(t)) = 0, and define

I,(u

A () = (fuiy (1), - - i, (1))
by
AL(t) = AT ()@ (uo () B (1) 2 (t)
whereA(t) = ( 0(t))@™(up(t)). We extend the
function i to mclude all other indices iR by setting
Pt = (Hy(1), - (D)
where
i i) fa=i,r=1,...,p
L(t) =4 i
o) {0 otherwise.
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Clearly we haveu! (t)¢q ( o(t)) = 0 forall i = and so
1,...,n,a € R, andt € T. Moreover, o
(zi(t1),y;(t1)) =¢ij (4,5=1,...,n).

3 225 (g 1), 1)
dup *° Hi Since the right member has rankand Z(¢;) is non-

5 g (1)) () = =t singular, the matri>(y§-(t1)) has rankn.
P ORUOR A = P o (b) = (a): Suppose we are givenc X andyu €
S 57 (1)) (1) Uy satistying
=1 Ot i fta(t)pal(uo(t) =0 (a € R, t € T);
" i ii. p(t) = —A*(t)p(t) (t € T);
=@ (uo(t))p'(t). L i
Now et i B*(1)p(t) = ¢ (uo(1)p(t) (+ € T).
ow se Let (y;,v;) (i = 1,...,n) be solutions to
vi(t) = B*(t)z;(t) — @™ (up(t)) i (¢ )
()= 5= = ¢ o)) §(E) = Loltly(®) + Lltlo(®) (e T)
and let . H that
1 such tha
Cij = . (vi(t), v;(1))dt. a.yi(te) =0(i=1,...,n);
Note that the functions,, ...,v, are linearly inde- b.|y1(t1) - yn(t1)] # 0;
pendent orf” since, otherwise, there would exist con- c. ¢ (ug(t))vi(t) = 0 for all a € I (up(t)) UQ,
stantsaq, ..., a, not all zero such that i=1,....,nteT.

n Clearly the result will follow if we show that, for
0 = Zaivi(t) al i = 1,...,n, <p(t1),yl'(t1)> = 0, but this is an
immediate consequence of the fact that ), y;(¢)) is
constant for alt € T', since

 o(t) (1)
. = P OAD() + 5 (OB (1) — () AW (1)
=2 au'lt) (e, = (B¢ (o (B)us(1) = 0.

= S alB (00 — ¢ ()i 1)
1

for all t € T and therefore, if

the functionz(¢) := > 7 a;z;(t) would be a nonnull
solution to the system

a(t) = —A"(t)2(t), B*(t)2(t) — " (uo(t))u(t) =0
_ Theorem 5.7 Suppose (g, ug) is a strongly normal
With 416 (t)pa(uo(t)) = 0 (a € R, t € T). Hence the solution to (P) and there exists (p, 1) € X x Uq such

The previous results imply the following set of
necessary conditions for optimality.

rank ofC' = (¢;;) isn. Note also that that
5 (g (£) ) v; (t a. o (t) > 0 with e (t) = 0 if pa(up(t)) < 0
# (uo(t))ilt) forallao € R, t € T}
= @' (uo(t))B*(t)zi(t) — A(t)'(t) = 0 b. p(t) = —Hi(t,x (t),u (t)7p(t),ﬂ(t)) and
and so the second condition of (A1) holds. Now, let Hyu(t, 2o(t), uo(t), p(t), ( ) =
y; be the solution to If (y, U) € Z satisfies

§0) = AWDY) + BEwO (€T, ylt0) =0 L L S e
ot

and observe that iii. v(t) € Ti(uo(t), u(t)) (t €T),

d and (A2) and (A3) hold, then

g Vi), 53 (8)) = 2 ()[A()y; (¢)
+ B(t vj(t ] — Z:(t)A(t)yj(t) J((xo,uo,p, w); (y,v)) > 0.
[v7 (t) 4 2 (1)@ (uo (t))]v; (t) Proof: Note first that, sincézo, uo) is strongly nor-
(vi(t),v;(t)) mal, Theorem 3.1 implies that the paip, ) is
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unique. By Lemma 5.6(z,up) satisfies assump-  subject to
tion (A1). Now, if (y,v) satisfies conditions (i)— @(t) = ui(t) + ua(t),
(iii) then (y,v) € Y (=g, up, ) and, by Lemma 5.5,
(y,v) € W(xo,uo,p). The result then follows by u(t) 2 0, ua(t) 2 us(t) (t € [0,1])
Lemma 5.21 andz(0) = z(1) = 0.
In this case we havé = [0,1],n =1,m =r =
g=2,& =¢& =0and, foranyt € T, z € R, and

6 Two numerical examples u e R2With u = (u1,us),

Let us end by providing two numerical examples L(t,z,u) =up +u3, f(t,z,u) =u? + uo,
which illustrate the kind of optimal control problems

one can deal with. v1(u) = —u1, wo(u) = ug — uy.

The first is taken up from [14] and it corresponds
to the optimal control of the van der Pol Oscillator. In
the model proposed, the state variables are the voltage H(t, 2, u,p, i, 1)
x1(t) and the electric currenty(t); the control repre-
sents the voltage at the generator. The optimal control = p(u? + uy) — uy — u3 + (1 + p2)us — pous
problem is that of minimizing

Observe first that

so that
5
1) = [Tt +ad(0) + ad(o)d Hot, 2,0 1)
subject to = (2pu; — 1+ p1 + p2,p — 2ug — p2),
£1(t) = z2(t), om0
p
r Huu ta 9 1 71 = .
Ea(t) = =1 (t) + wa(t) (1 — 23(8)) + u(d), 2,00, 45,1) (o —a)
z1(0) =1, 22(0) = 0, Therefore, for any(z, u,p, ) € Z x X x Uy and
—2a(t) — 04 <0 (te]0,5]). (yv) € 2,
This problem is discussed in [14] where the authors J((x,u,p, n); (y,v))
apply a result, based on the solvability of an auxil- )
iary Riccati equation related to second order sufficient _ _2/ D2(1) — v2(D)dt
conditions, and obtain an optimal local solution to the 0 [p()vr(t) — va(t)]dt.

problem. A slight modification of the model could in- Clearly (o, uo) = (0,0) solves the problem. Since
volve constraints in the control of the type considered ’ ’

in this paper, instead of the state constraints, and so 1 (uo(t)) = (=1,0),
the Hamiltonian would take the form
o (uo(t)) = (=1,1),

H = pyzo + po[—x1 + x2(1 — :L‘%) + ul
we have
2 2 2

—u? — 2} — 2} — pp(u).
Depending on the functiop, one can readily verify
the assumptions of Theorems 3.1 or 5.7, and find can- 7, (y,(¢), u(t)) = {h € R* | —hy < 0if p1(t) = 0,
didates for a solution to the problem. -

The second example deals with a weakly normal —h1 =0if pu(t) >0,
solution (xg, up) to (P) with (p, 1) a pair such that —h1 + hy < 0if pa(t) =0,
(0, up, p, 1) is an extremal (it satisfies (a) and (b) of ~ e
Theorem 5.7), but hy 4 hy = 01f ps(t) > 0},
mo(uo(t)) = {h € R® [ =h1 <0, —h1 + hz < 0}.

Now, since

To(uo(t)) = {h € R*| —hy =0, —hy + hy = 0}

J((x()» ug, p, N), (y? U)) <0

for some(y, v) € Z satisfying (i) and (ii) of Theorem
5.7 withu(t) € 1o (uo(t)) (t € T). fe[t] =0, fult] = (0,1),

Consider the problem (P) of minimizing
the system

au) = [ @) + (o) H6) = —A*(0)2(t) = 0,
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(1) B(t)h = 2(t)hs = 0

for all (hy, he) € To(ug(t)) (t € T') has nonnull solu-
tions and thereforéx, up) is notry-regular. On the
other handz = 0 is the only solution to the system

Z(t)hg S 0

for all (h1,ha) € ma(uo(t)) (t € T) since both
(0 —1) and(1,1) beIong tng( o(t)) implying that

—z(t) < 0andz(t) < 0 (t € T), and so(xg, up) is
To-regular. Lety = (u1,p2) = (0,1) andp = 1 so
that

i po(t) > 0 anduq(t)ea(uo(t)) = 0 for a =
1,2andt € T

ii. p(t) = 0 = —Hy(t, 20(t), uo(t), p(t), pu(t), 1)
forallt € T,

iii. For all t € T we have

= (u(t) + pa(t) — 1L, p(t) — p2(t)) =
and so(zg, ug, p, 1) is an extremal with(zg, ug) a

H,(t,zo(t),

(0,0)

weakly normal solution to the problem. Note also that

1 (uo(t), pu(t)) =
{(h1,hg) € R?| —=hy <0, hy = ho}

and therefore the system

Z(t)hg < 0 for all (hl, hg) S Tl(’LL()(t),,u(t)) (t S T)

has nonnull solutions implying that, ug, i) is not
Ti-regular.
Now, if we setv = (v1,v2) = (1,0) andy = 0,
thenu(t) € m(uo(t)), (y,v) solves
y(t) =wa(t) (teT)

together withy(0) = y(1) = 0, and so it satisfies (i)
and (ii) of Theorem 5.7. However,

J((z0, w0, p, 11); (y,v)) = =2 < 0.1

7 Conclusions

This paper considers optimal control problems involv-
ing equality and inequality constraints in the control
function which might yield negative second varia-

tions.

It studies the nonnegativity of the second varia-
tion in certain sets of critical directions, defined in
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terms of differentially admissible variations, as a nec-
essary condition for optimality under different regu-
larity assumptions.

Two different results are proved in this respect.
A first result shows that, under mild assumptions, if
the Lagrangian does not depend on the state, then
T1-regularity implies the nonnegativity of the second
variation in the convex cone defined precisely by the
space ofr; or modified admissible variations.

A second result deals with strongly normal so-
lutions, that is,p-regular optimal controls, and it is
shown that, by imposing a condition related to inac-
tive constraints, the desired second order necessary
condition expressed in terms of modified admissible
variations does hold.
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